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Annual Technical Report
DARPA Contract DACA76-85-C-0001

A Programming Environment for Parallel Vision Algorithms
Christopher Brown, P.I.
University of Rochester

11 February 1987

1. Oseriiew
The second year of work in the development of programming environments

for parallel vision produced several internal and external reports as well as much
exportable code. The reports are detailed in the comprehensive DARPA Contract
Reference List at the end of this Annual Report. There were appearances at
several national parallel computing conferences, with papers on the Butterfly
winning various awards. The DARPA Benchmark study and its attendant
workshop produced several interesting results. Last, our hardware commitment to
real-time vision is increasing with the upgrading of our 16-node butterfly with the
BBN-ACI Floating Point Platform package and the acquisition of faster SUN
computers and image-processing hardware.

Rob Fowler joined our faculty in September of 1986 and is working in areas
relevant to the development of Programming Environments, so his work and plans
are reported here also.

2. CONSUL and Related Work

The CONSUL project is an attempt to simplify the use of multi-processor
computers for general-purpose programming through automatic detection of
parallelism in programs. Current programming techniques for multi-processors
require programmers to worry about two related but distinct issues: how to
express a solution to their problem as a program, and how to partition this
program into parallel pieces. Multi-processor computers will never be as easy to
program as sequential ones until programmers are freed from the need to
parallelize programs manually. We believe that the best solution to this problem
is to develop compilers that will automatically detect and exploit parallelism in
programs that have not been explicitly parallelized by their authors.
Unfortunately, automatic parallelization is a difficult problem that has so far
resisted any general solution. One of the main reasons is that the source languages
people are trying to parallelize are inadequate.

Standard imperative languages rely on side-effects to maintain the state of a
computation, a problem that is compounded by aliasing (the same piece of state ...
information can have many distinct names). These features make imperative
languages impossible tc parallelize except in a few limited areas (e.g., the
extremely regular code found in scientific computations). Declarative languages,
which are generally free of side-effects and have a more tractable mathematical
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foundation (important in reasoning about both programs written in them and legal
ways of compiling those programs), are more promising starting points for
automatic parallelization. Our research is thus focussed on the compilation of
constraint languages (a particular kind of declarative language) into a form that
can be efficiently executed on multi-processors such as the Butterfly.

We have developed a prototype constraint language called CONSUL, which
takes its formal basis from set theory. CONSUL and the rationale for its design
are discussed in several recent or in-preparation papers: Baldwin and Quiroi,
"'Parallel Programming and the CONSUL Language", submitted to the 1987
International Conference on Parallel Processing; Baldwin and Quiroz, "Design of
the CONSUL Programming Language", circulating internally in draft form,
shortly to appear as a technical report: and Bald"in, "Wh\ We Can't Program
Multiprocessors the Way We're Try ing to Do It Now", in preparation.

The most important on-going work on CONSUL is a set of experiments
intended to give us an estimate of the parallelism available from CONSUL
programs. Each experiment begins by running a CONSUL program tinder a
crude interpreter --- "crude" because most of the interesting work of solving
constraints is done by the user. The interpreter's main purpose is to note when
each constraint in a CONSUL program can be satisfied and what variables are
defined in the course of doing so. This information is written to a trace file, which
is later compacted into a maximally parallel form by a compactor (based on that
described in Nicolau and Fisher, "Using an Oracle to Measure Parallelism in
Single Instruction Stream Programs", 14th ACM SIGMICRO Microprogramming
Workshop, Oct. 1981). Because the traces are taken from actual CONSUL.
programs in execution, the parallelism found by the compactor is "'oracular", i.e., a
real compiler could fully exploit it only if it had perfect information about the
object program's run-time behavior. Our results will thus indicate the upper
bound on the parallelism that can be derived from CONSUL programs.
Development of the interpreter began in the Summer of 1986 using Common Lisp
on a Sun workstation. In Autumn of 1986 we switched to Texas Instruments
Explorer workstations, which provide a more sophisticated Lisp environment for
our software. Although moving in-progress work to the new environment delayed
us somewhat, the problems have been overcome and work is progressing nicely.
The interpreter, although far from complete, is now producing usable traces from
simple CONSUL programs. A graduate student (Art Altman) has joined the
project and has begun working on the compactor. We expect to have results from
the experiments this Summer.

Concurrent with the work on the interpreter and compactor, we have begun
exploring a multiprocessor execution model for compiled CONSUL programs.
This is a message-passing model, in which processes correspond more or less one-
to-one to CONSUL constraints (subject to a number of optimizations that reduce
the relative overhead of message passing and process start-up). The messages
passed between processes contain (in principle) complete binding environments for
variables. This approach eliminates or reduces many problems faced by other
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approaches to parallel execution of logic or constraint programs. For example,
message passing eliminates the danger of generating incompatible values for
variables shared between independent processes, and passing complete
environments makes it much easier to synchronize consumers of values to
producers than is the case when only single bindings are passed. The price paid
for this simplification is that messages are rather large, although there are
optimizations that can reduce their size. A complete description of this model
appears in "'Design of the CO\SUL. Programming Language" (cited abo e).

Cesar Quiroz (a graduate student) has been conducting research for his
doctorate on automatic parallelization of traditional programming languages since
late Summer of 1986. This work is related to the CONSUL project, although not
an integral part of it. Cesar's most recent work has been the development of a
formal system for reasoning about transformations of sequential programs into
parallel ones. This work looks very promising, although it has not yet advanced to
the point of actual application.

Work on CONSUL. during the next year will emphasize conI)letion of the
parallelism experiments, publication of their results, and initial work on a
CONSUL compiler (assuming the experiments indicate sufficient parallelism in
CONSUL programs). As stated abo~e, we expect the experiments to be finished
this Summer. Late Summer and Fall of 1987 should be devoted to writing papers
on the experiments, with compiler design beginning in the Winter.

3. Comparing Communication Models

Programming a multiprocessor (or any other parallel computer) involves
tradeoffs between parallelism and communication. In order to achieve the best
perfirmance, the programmer must maximize parallelism and minimize
communication. These goals are in conflict since increased parallelism usually
implies increased communication. Although the intrinsic properties of the
application limit the amount of parallelism available, communication costs so
frequently dominate that the inherent limit to parallelism is rarely reached. One
of the few commercially available multiprocessors that does not put a low limit on
parallelism and yet still provides efficient communication between processors is the
Butterfly.

Conceptually, a tightly-coupled, shared-memory multiprocessor, such as the
Butterfly, can support a model of computation based on .-ither shared memory or
message passing. The choice of model affects the decomposition of the problem
into parallel processes and the resultant granularity if communication. An
architecture, such as the Butterfly, that supports both models offers the
programmer a wide range of choices for problem decomposition, each with
different performance attributes. (The Psyche project, described elsewhere in this
report, is an attempt to provide software support for this range of choices.) We
performed a series of experiments using Gaussian elimination to evaluate the
tradeoffs between shared memory and message passing, over a range of
decomposition strategies. Several different implementations were studied and their
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performance compared.

One result of these experiments was a set of empirical measures of the effect
of decomposition on communication costs. In addition, we have shown that the
particular model of computation in use is less important than how well it is
matched to the application. The performance of an application depends not only
on the efficiencN of the underl.ing communication, but also on the extent to which
the underlying model of computation encourages or discourages communication.
This work demonstrates the need for a parallel programming environment that
supports multiple communication models and decomposition strategies, the focus
of our research.

The first results of this work were presented at the 1986 International
Conference on Parallel Processing. (This talk received the Distinguished
Presentation Award at the conference.) BPR 3 is an early version of that paper.
Additional results were presented at the Workshop on Numerical Algorithms for
Parallel Computer Architectures sponsored by the Institute for Mathematics and
Its Applications and will be published in a Springer-Verlag monograph related to
the workshop.

4. SMP and *lodula2
The environment of choice for the Butterfly is the Uniform Syltemn package

from BB\, together with the C programming language. The Uniform System,
based on the shared memory model, is the only enironment provided b BB\

that masks many of the low-lexel details from the programmer. Therefore,
programmers find it easier to use the Uniform System than to build the program
from scratch, regardless of how %%ell the application fits the shared memory model.
Our experiences hate shown the need for support for other models, in particular,
message passing.

SMP (Structured Message-Passing) is a simple programming en'ironment for
the Butterfly based on message-passing. It is similar in flavor and scope to the
Uniform System. SMP provides Butterfly programmers with a model of parallel
programs that consists of: (1) process families, whose members are created and
destroyed together, (2) interprocess communication, within a family, based on
asynchronous message-passing (send/receive) according to a fixed communication
topology, and (3) a dynamic hierarchy of such process families. SNIP process
families and hierarchies add structtre to the basic process model of Chrysalis. The
advantages of message-passing include increased atItonomy for processes, increased
efficiency by exploiting locality of data, avoidance of exrlicit synchronization for
data access, and improved protection between processes.

The heavyweight process model of SMP also complements the lightweight
process model of Modula-2. We implemented a 68000 code generator for the
DECWRL Modula-2 compiler and ported Modula-2 to the Butterfly. Our
implementation of Modula-2 provides lightweight processes that share memory
(i.e., coroutines), but no true parallelism (ie, the implementation cannot exploit
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multiple processors). SMP provides true parallelism via heavyweight processes
that communicate using messages, rather than shared memory. Experience has
shown that the synergy arising from the combination of lightweight and
heavyweight processes is a powerful tool for parallel programming. For many
applications, a combination of SMP and Modula-2 could replace the use of C and
Chr salis system calls on the Butterfl.

Our SNIP and Modula-2 implementations ha~e been in use on the Butterfly
for 6 months. SMP is now being used within BB\ and has been requested by
several other Butterfl\ sites. Both software packages will be distributed as part of
the BBN user-contributed software release. BPR 4 describes the Modula-2
implementation: BPR 8 describes the SMP sstem.

5. Chrysalis+ +
The standard Butterfly programming environment is based on the C

programming language and the Chrysalis operating system. This enironment
requires the user to write a substantial amount of code that relies hea~ily on the
explicit use of pointers, size calculations and type casting, which in turn reduces
the amount of compiler type-checking. As a result, programming the Butterfly is
extremely error-prone. Since tools for debugging parallel programs are only now
being developed (eg, Instant Replay), tracking down these mistakes can be very
time-consuming.

Chrysalis+ +, based on C+ +, is an effort to improve the situation by using
object-oriented programming. C+ + provides a richer, and safer, language than
C, and Chrysalis+ + provides a safe, easy-to-use interface to Chrysalis. The
binding strategy for Chrysalis+ + is to recast explicit Chrysalis object
management into implicit C+ + object management. Chrysalis+ + merges
creation of and access to Chrysalis objects into the declaration of the variable used
to represent them. This means that programmers cannot improperly create or
access Chrysalis objects. Chrysalis+ + also merges object deletion into the
automatic C+ + variable deletion mechanisms. This approach provides the entire
Chrysalis+ + programming environment with ne single object management
strategy. This strategy is successful in reducing the use:r code to manage a
Chrysalis object from a hundred lines of unchecked C code to one line of
strongly-typed C + + code.

We have implemented Chrysalis+ + on the Butterfly. Recently, the new
C+ + compiler from Bell Labs and the new Green Hills C compiler from BBN
were incorporated into our environment. The first release is now available for
distribution (although legal details concerning C+ + licenses must be worked
out). BPR 15 describes Chrysalis+ + and the Butterfly implementation.

6. Crowid Control
One of the problems with programming a parallel processor is that it is often

very difficult to express parallelism, even when the parallelism is obvious. For
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example, when a single process broadcasts a message to 100 other processes, the
message must be copied from the sender to 100 recipients in sequence. Ideally, it
should be easy for the broadcast to be organized in such a way that each process
gets the message and then passes it on to several others, thereby performing most
of the copy operations in parallel. Since the source and destination processes tend
to vary dynamically, this requires the ability to dynamically map tree structures
onto a set of processes. Many different problems can make use of this capability,
including broadcasting, multiple process creation, and elections.

An important attribute of these problems is that they cannot be executed
completely in parallel. For example, all processes cannot copy a message from a
single memory in parallel. Some processes must copy the message into their local
memory, from which other processes will make copies. Similarly, new processes
cannot be created completely in parallel, since some processes must be created by
newly created processes. We can implement these problems in parallel by
imposing a partial order using an arbitrary embedding in a balanced binary tree.
Similar techniques ha~e been used to implement broadcast in local-area networks
and internets.

A crowd is a set of processes that, at some point in time. cooperate to execute
some function in parallel. A partial order is required because some processes
make use of previously computed results. Crowd Control is a library package We
have deeloped for the Butterfly that dynamically maps a binary tree control
structure onto a set of processes. A partial order is defined by the arbitrary
embedding of processes in the binary tree. As a result, N processes can execute a
constant time function on N processors in O(log N) time rather than 0(N) time.
Crowds are dynamic in that processes may join and leave crowds, depending on
whether they wish to participate in the execution of crovkd functions. Processes
that join a crowd can be either homogeneous or heterogeneous.

The time required to serially execute a function F on each of P processors is
given by

P* (T(F) + C)

where T(F) is the time required to execute the function and C is the
communication cost. Using crowd control, the same task can be executed by each
of P processors in time

log2 (P+')I * (T(F) + C)

where C is the communication costs associated with crowd control on a per
process basis. In our implementation, C ranges between 2 and 5 ms., depending
on the success of certain cache operaLions. Our empirical data, which ranges over
values of P from 1 to 116 and values of T(F) from 1 ms. to 16 ms. is consistent
with the analytic results for different values of P and T(F); additional processors
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cause the execution time to grow logarithmically. Crowd control is particularly
useful when T(F) is greater than the communication costs (2 ms. in our
implementation) or P is greater than 16.

The Crowd Control package is now ready for distribution. A BPR describing
it is in preparation.

7. Prometheus

The Butterfly architecture provides the illusion of a globally-shared memory.
Although any node in the machine may access memory on any other node, there
is a substantial performance penalty for doing so, particularly when such
references are not amortized via block copy operations. As a result, naming
remote memory is a transparent operation (the mechanism used is the same
regardless of where the memory resides), but the actual access to remote memory
is not (since the performance penalty forces programmers to use block copy
operations).

The Uniform System, a library package from BBN that supports the shared-
memory model, does not distinguish between naming operations and addressing
operations. In other words, a pointer can be used both to access the data to which
it refers. and as a generic name for the data to which it refers. Our experience
with the Uniform System has shown that the majorit, of operations on the global
address space are naming operations, not access operations. Typical operations on
the globally-shared address space consist of passing names (pointers) from one task
to another and copying data Out of the global address space into local memory.
Addresses are used in both cases. The Prometheus project is an attempt to design
a shared-memory programming model in vkhich naming and addressing are
separate operations. The three salient features of Prometheus are:

" lightweight tasks
" a global name space
" local data spaces

Prometheus uses an addressing scheme characterized by a global name space and a
local data space. The name space is accessible to all tasks running in the system
and every task has its own local data space. We refer to the global name space as
the Qspace.

The Qspace memory makes a clear separation between global and local
memory. Once a datum has been placed in the global memory, the operations
that can be performed on it are extremely limited. In order to actually change the
value of a global datum, it must be removed from the Qspace, the appropriate
value changed, and then reinserted into the Qspace. The act of removal moves the
datum from global memory to local memory. Hence, all data manipulation is done
on local memory. All name manipulation is done on global memory and the
operations on that memory are rigidly defined. The organization of the Qspace is
based loosely on the Linda distributed programming language, although the
Qspace is much simpler than the tuple-space of Linda.
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We have recently finished the first iteration of the Prometheus design. A
BPR describing the design of the Qspace is in preparation.

8. Elmwiood
Last semester, as a learning exercise, a graduate class designed and

implemented an object-based operating system for the Butterfly called Elmwood.
This project was the first attempt Outside of BBN to build an operating system for
the Butterfly. In Elmwood, objects are passive entities. Processes communicate
using remote procedure calls to objects. Object handles are kernel -protected, so
an object has full control over the set of processes that may manipulate it. A
process's address space appears to grow and shrink dynamically as a result Of
procedure calls to objects.

Although Elmwood was under-taken as a class project, it has made concrete
contributions to our research effort. First, it has significantly expanded our
understanding of the internal workings of the Butterfly'. Second, we have
developed sufficient expertise and software to allow us to consider constructing an
operating system (Such as Psyche) without using Chrysalis as a base. Third, many
of the ideas in Elm wood are being explore as part of the Psyche project. A BPR
describing Elmwood and its implementation is in preparation.

9. Instant Replay

In order to understand an execution of a program, we must be able to
characterize it in a form amenable to study and analysis. The Output produced
when the program Is executed is one possible characterization, although it is
usuially too coarse to enable us to understand Subtle aspects of the program's
execution. For sequential programs, the code and input data offer a static, fine-
grain characterization of an execution, since we can use them to produce the
execution and then examine it at an arbitrary level of detail. This particular fine-
grain characterization does not suffice for parallel programs. Different executions
of the same parallel program with the same input often do not produce the same
results due to race conditions. No static characterization can capture Such
behavior.

We have developed a dynamic, fine-grain characterization of parallel program
execution based on a partial order of accesses to shared objects. To capture a
description of a particular execution of a program, we record the relative order of
interprocess events as they occur during execution. Such a record of accesses is
expected to be much smaller than a record of all data exchanged between
processes, thereby making this description of an execution relatively easy to
capture. Once we have recorded an execution description, it can be used by a
variety of tools to help the programmer understand the behavior of the program.
One such tool, a prototype called Instant Replay, has been implemented on the
Butterfly. Instant Replay uses an execution description to reexecute a parallel
program, enforcing repetitive behavior otherwise precluded by race conditions.
The deterministic behavior offered by Instant Replay makes the standard
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debugging cycle possible for parallel programs.
Recently, we have modified the monitoring protocol and improved its

performance. Monitoring now affects the overall performance of our test program,
Gaussian elimination, by only about 1%. We are also working on a version of the
protocols for loosely-coupled systems. A paper describing this work, "Debugging
Parallel Programs with Instant Replay," has been accepted for publication in IEEE
Transactions on Computers and will appear in April 1987. BPR 12 is an early
version of that paper. In addition, a position paper on our basic approach was
presented at the IEEE Workshop on Instrumentation for Distributed Computing
Systems.

10. LYNX

LYNX is a high-level programming language for distributed computing. It
was originally designed at the University of Wisconsin - Madison, where it was
implemented on the Crystal multicomputer. We began a port to the Butterfly in
September of 1985. A partial implementation became available in early 1986, and
a full version (including a number of features not provided at Wisconsin) was
finished by the middle of the summer.

In the context of our work on the Butterfly, LYNX serves both as a language
design research project and as a da.-to-day programming environment for
applications development. As a language design project, its goal is to support both
application and system programs in a single conceptual framework. Unlike other
distributed languages, LYNX relies on efficient run-time binding and checking to
allow processes to be compiled independently, wthout knowledge of their peers.
A newly-created process is therefore able to communicate, within the language,
with separately-de eloped processes already in operation. The programmer can
not only run an application composed of many cooperating processes, but can also
create server programs that remain in operation, providing their services to each
application in turn. A novel coroutine-like mechanism supports the automatic
management of context within a server for interleaved conversations with an
arbitrary number of clients.

In its role as an applications testbed, LYNX provides a significantly higher
level of convenience, functionality, and type security than is possible with a library
package for interprocess communication. Since LYNX is a message-based
language, processes do not in general share memory (though they' can arrange to
do so through use of one of the standard LYNX libraries). Communication
normally takes place over two-way communication channels called links. The ends
of links can be passed back in forth in messages, permitting dynamic
reconfiguration of the process interconnection graph. Communication statements
refer to arbitrary collections of program variables, which are gathered and
scattered automatically. Strict type checking is enforced. Errors in communication
result in high-level language exceptions, similar to those of Ada. The integration
of message passing with the coroutine facility combines the conceptual ad antages
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of blocking remote procedure calls with the performance advantages of non-
blocking, buffered messages.

10.1. Butterfly Implementation
Our implementation of LYNX has been in steady use since late summer.

The final features to be added included integration of the exception-handling
mechanism %ith the catch/throw facilities of Chrysalis, and the use of pointers to
provide shared access to menior\ objects by multiple processes. A ne,. utilitr
routine "as developed this fall that allows one process to raise an excepti(n in
another, allowing the other to perform cleanup operations before terminatirg.
This routine has been incorporated in a stand-alone tool program that can be uHcd
by anyone on the Butterfly. It is of particular help to users of LYNX, since it :,Irn
be used while debugging to terminate a program in an infinite loop in such at kJ\
that exceptions propagate to all communicating processes.

The largest application completed to date is a checkers-playing program bwt ecd
on Fishburn's algorithms for parallel alpha-beta search. Experimentation with this
program continues, and is expected to result in a case study paper sometime this
next year. LYNX also served as the implementation environment for a
progrLinming assignment in one of our graduate courses this past fall, and for one
of the applications in the DARPA parallel algorithms benchmark study in August.

A complete language reference manual was published as Rochester BPR #7.
A comparison of three implementations of LYNX was presented at the 1986
International Conference on Parallel Processing in August. A paper on the
language design and rationale appeared in the Januar 1987 issue of IEEE
Transactions on Software Engineering. A technical note on the LYNX type-
checking mechanism is still in publication delay at the same journal.

10.2. Performance Analysis
Experience with a wide range of multiconputer and multiprocessor systems

software suggests that message passing is often three or four orders of magnitude
more expensive than shared memory for communication between parallel
processes. Differences in the speed of underlying hardware mechanisms fail to
account for a substantial portion of the performance gap. The remainder is
generally attributed to the "'inevitable cost" of higher-level semantics, but a deeper
understanding of the factors that contribute to message-passing overhead has not
been forthcoming. .Though message- passing systems address such isstes as
synchronization, buffering, flow control, authentication, address resolution, type
checking, exception handling, and error correction, none of which is provided with
shared memory, there remains a widespread belief among researchers in parallel
systems that current message-passing facilities are somehow slower than they ought
to be.

In an attempt to address the issue of "where the time goes" in message
passing systems, we undertook a detailed study of the Butterfly implementation of
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LYNX. Our study involved a number of preliminary measurements, a series of
protocol optimizations designed to improve performance, and a detailed analysis of
remaining costs. The data provide a direct measure of the expense of individual
features in LYNX. They also provide insight into the likely costs of other
message-passing systems, both present and future.

Careful attribution of costs to message-passing subtasks is the only reliable
way to evaluate the cost-effectiveness of contemplated features. Without detailed
accounting, it is impossible to determine whether the difference in speed between
competing systems is due to hardware overhead, choice of semantics, or simply
cleverness of coding. We believe LYNX to be representative of a large class of

languages in which interprocess communication is based on rendezous or remote
procedure call. Many of our results should generalize directly. In addition, our
experience in measurement techniques should be of use to other researchers in
performing similar studies.

The results of our study are reported in Rochester BPR #17, which has been
submitted to the 7th International Conference on Distributed Computing Sstems.
In addition to apportioning overhead among some twenty different functions, the
paper provides a timeline that explains what is happening during each
microsecond of a remote invocation. As a result of our protocol enhancements,
trivial remote operations in LYNX new complete in about 1.8 ms, a time that is
competitive with the fastest comparable systems. We are eager to see the effect of
the 68020 processor upgrade on our figures.

11. Netisork Support

As software is developed to make multiprocessors more useful, it becomes
increasingly important to have high-quality graphics interfaces ,ith which to
interact with these machines. In an environment such as ours, where users
routinely use the multiprocessor remotely from powerful personal workstations
with bit-mapped displa.s, it also becomes important for user interface and other
software to work across the network. These concerns have been addressed at BBN
by providing Butterfly support for the X windowing system. The, have also
prompted the development here at Rochester of a remote command daemon
compatible with the Berkeley UNIX rsh facility.

X is an increasingly popular, network-transparent windowing system
developed at MIT. Implementations of X are available on a wide variety of
machines. The Butterfly implementation was constructed by one of our owvn
graduate students, Ken Yap, during a summer internship at BBN. This fall, as
part of a research assistantship, Ken installed the Butterfly X tools in our local
environment and developed an interface for X that allows it to be used from
LYNX. Since the X library contains several hundred interface routines, with a
wide variety of parameter and data structure types, the interface description files
provided an excellent opportunity to test the LYNX compiler.

-. A -m I u I in ldlmnlllll ~ n m l l ~lm l mll in m lllw lllm
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The X interface has been used to write a LYNX version of the standard
'plaid" program, a graphics demonstration that displays a shifting pattern of
diagonal bars created b,, flipping pixels along an interfering pair of mo'ing
borders. It has also been used to construct a mouse-based graphical interface to
the LYNX checkers-pla ing program.

To allow Butterfly progranis to be executed remotely from our UNIX
machines. _,ithout logging in dir.ctl, Ae also de'eloped a daemon process that

runs on the multiprocessor and supports the Berkelc% UNIX rsh protocol. A user
at a "orkstation, for example, can nok type a single command that causes the
daemon to create a nek shell (on the Btttcrfl) khich in turn allocates an
appropriate number of Butterfl nodes (see the section on Softkare Partitioning,
elsewhere in this report) and runs the checkers program. Using the X library, the
checkers program then creates a ne% graphics %,indow back on the workstation's
screen in which to play the game. No explicit log-on to the BLtterfly is required.

To facilitate use of the rsh daemon, we implemented enhancements to the
Butterfl shell program that 1) allow a ne-b\-created shell to be passed an initial
command, and 2) allow multiple commands to be specified on a single line. These
facilities are standard in the UNIX shells. Our modifications of the Buttcrfl.y shell
ha~e since been adopted by BBN.

12. Softiare Partitioning

One of the most serious limitations of the Chrysalis operating systeni has
alkas been its assumption that the machine belongs to a single, current user.
Independent applications ha~e been unable to coexist on the same machine, partly
because of protection problems, and partly because there has been no mechanism
for partitioning certain fundamental system resources.

With the dramatic increase in use of the Butterfly through the summer of
1986, it became apparent that support for multiple users Aas essential in our local
environment. Our professional staff undertook to develop soft, are that allows the
nodes of the Butterfly to be partitioned into virtual machines. Users logging into a
Butterfly, now' recei,,e a single node by default, and can arrange to acquire or
return additional nodes d.ynamicall\, Protection problems remain (and in fact
cannot be solved completely with the current hardware architecture), but
accidental interference between programs has been made relatively unlikely.

At the fall Butterfly Users Group meeting, t.e learned that BBN had been
pursuing partitioning independently. Our groups ha e since been in contact to
ensure that the best parts of both approaches make their way into the official
software release.

13. Modula-2 Event Package

Certain kinds of parallel algorithms, particularly graph algorithms, are most
easily coded with extremely large numbers of processes (on the order of thousands
or tens of thousands). Until recently, no programming environment on the
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Butterfly currently supports such applications, We were made acutely aware of the
limitation during the DARPA benchmark study, when we would have liked to
code graph algorithms with one process per node of the graph. Though Modula-2
and LYNX both provide lightweight threads (coroutines) inside Chrysalis
processes, the mechanisms used to communicate between threads in the same
process are completely different from the mechanisms used to communicate
between threads in different processes.

In order to proide unifornz communication betmcen ver large numbers of
threads, we undertook this past fall to implement a library package in Modula-2
that encapsulate the blocking Chrysalis operations, allowing them to be called
from Modula-2 coroutines without blocking an entire process. An operation (such
as waiting for an event) that would normally block the process now places the
current coroutine in a library data structure and switches to another coroutine
instead. When there are no other runnable coroutines in the current process, the
library waits for an event and unblocks the appropriate coroutine.

The basic mechanism is similar in flavor to the thread facility in LYNX. The
difference is that the events library ties the blocking and unblocking of threads to
the fundamental scheduling mechanism of the Butterfly. rather than to a particular
style of interprocess message passing. Though the events package lacks all the
LYNX advantages of high-level language convenience, it can be used to
implement an library package-based communication tacility that is feasible on the
Butterfly. We hope e.entuall} to extend the package with several higher-level
communication facilities, perhaps in conjunction with the Psyche project described
belowr.

14. Psyche
Conventional wisdom holds that parallel processes must communicate either

by sharing memory or by exchanging messages. These alternatives are generally
viewed as incompatible opposites. It is our contention, however, that conventional
approaches are better regarded as points on a continuum that reflects the degree of
sharing between processes. The full spectrum includes many different styles of
message passing, as well as monitors, path expressions, remote procedure calls,
atomic data structures, and unconstrained shared memory. In a pure shared-
memory approach, processes share everything; in a pure message-passing
approach, they share nothing. The other options lie somewhere in-between.

The Psyche project is an attempt to construct a general-purpose
multiprocessor operating system. By general-purpose we mean 1) that the
operating system will run almost any application for which the hardware is
appropriate, and usually run it well, and 2) that it will support both individual,
highly-parallel applications and larger numbers of users with smaller applications,
in the style of conventional time sharing. We consider the support of large-scale
parallelism to include the ability to choose the communication model most
appropriate for each individual application, or piece of an application.
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The fundamental abstraction provided by the Psyche kernel is the realm. A
realm is essentially an abstract data object; it consists of code, data, and references
to other objects. The data can be accessed only through invocation of the code.
Through a system of kernel-protected capabilities, incremental changes to address
spaces, and direct execution of remote operations, Psyche will address the
conflicting goals of efficiency, flexibility, and security. Realms will permit the
implementation of a wide variety of process and communication models. They
will allow multiple models to coexist on a single machine, and even within a single
application.

Our work so far has focussed on the abstractions provided by the Psyche
kernel. We have worked through several iterations of the kernel interface
specification and are now assembling a design document to be submitted for
publication. We hope to be in a position to begin implementation sometime this
spring. Eventually, we plan to explore the implications of Psyche primitives on
programming language design. Our goal is to investigate the extent to which
multiple models of interprocess communication can be supported within a
common language.

15. Motion and Real-time Al
During 1986, Aloimonos' work centered on the robust and reliable

computation of intrinsic images, or physical parameters of the scene. He invented
several new techniques, and his method has been to add information sources
rather than to rely exclusively on apriori constraints (such as smoothness). His
work has mainly been in the domains of multiple frame vision (stereo, motion)
and in texture. Bandopadhay was also working in the domain of motion. His
work has been to apply clustering to the motion segmentation and egomotion
problem, and to notice that proprioceptive feedback from tracking stationary
points can work with vision to make the egomotion calculations easier.

The tracking work is the scientific motivation for certain robotic hardware
designed and built at Rochester, which consists of two cameras on a "robot head".
With this setup we are investigating real-time vision. A pilot project by Date
Coombs and Brian Marsh has produced a software framework and a working
program that tracks multiple moving colored objects in a scene. This work
emphasizes multi-resolution processing, focus of attention, and real-time and
priority job scheduling, but does not mechanically move the cameras to implement
its active attention .control. Tom Olson is continuing this work. With the
acquisition of new and faster host computers, new and faster low-level image
analysis hardware and hardware upgrades for our Butterfly Parallel Processor, we
hope to build a multi-camera system that can track and analyse multiple objects in
real time in navigational and robotic contexts.

15.1. BIFF: A Butterfly Vision Library

Tom Olson and Liud Bukys have constructed a parallel version of the IFF
vision library written at the University of British Columbia under the direction of
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Prof. Havens. IFF is a file organization for images, and an associated set of image
processing and vision utilities, something like SPIDER or GIPSY. IFF programs
are written as UNIX filters, and the system uses UNIX pipes to concatenate
operations. This is a slow way to go about things but is very modular and good
for interactive use. BIFF, the parallel version, is much faster, both through
capitalizing on the innately parallel nature of many low-level vision operations,
and through use of the large memory on the individual butterfly nodes to achieve
"in-core" files that can be passed from process to process quickly through memor
mapping. Tim Becker has extended BIFF to contain a version of Burt's gaussian-
filter resolution pyramid. We expect BIFF to be a use.-] tool and to expand in
the future.

15.2. Segmentation isith the Uniform System

Tom Olson has constructed an advanced program under the Uniform System
to do segmentation. We are interested in the general problem of combining the
outputs of lov-lexel vision processes to produce robust interpretations of large
classes of input images. In addition, we want solutions that make efficient use of
large-scale parallel hardware. In order to study these issues we have chosen a
particular well-studied problem (2-d segmentation) for implementation on the
BBN Butterfly Multiprocessor. To date we have been more concerned with
communications and systems aspects of the combination than with the
mathematical aspects of cooperating constraints or evidence combination.

The program works by recursively splitting regions until all regions satisfy
some termination criteria. Users of the system must provide a set of functions
called experts which take as their argument some region and generate a proposed
segmentation of that region. The user also provides a reconciling function which
integrates a set of proposed segmentations into a single proposal, which the main
program then executes. With minor changes a large class of currently used
segmentation algorithms can be fit into this model. Among its defects are that a)
there is no provision for merging and b) reasoning based on more than one region
(eg based on connectivity) is forbidden. The current implementation has only one
expert function, a grey-level histogram splitter loosely based on PHOENIX, the
multispectral segmentor of Shafer and Kanade1 . The program is well parallelized,
using the Uniform System library to implement parallel loops. Users provide an
initialized vector of pointers to the expert functions and the reconciler. The
program makes use of BIFF (see above).

This segmentation program illuminated many issues of parallelization, load
balancing, and models of computation for tightly coupled MIMD machines such
as the Butterfly.

16. Multi-modal Segmentation
Paul Chou is building a segmentation program that uses multiple modes of

information (intrinsic images such as depth and local surface orientation,
structured light, image intensity). His approach uses Markov Random Fields as a
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way of expressing the probability of local configurations of evidence. A method of
combining likelihoods is used to do incremental evidence combination. So far the
likelihoods have been provided by Dave Sher's operators (see below). Local
evidence combination yields intermediate results that are combined by more
global methods (for instance grouping processes and methods to fit parameteriied
surface models to data) into segments (description, of three-dimensional suIface
patches).

17. Parallel Vision klgorithms

The Darpa Benchmark [Brown et al 19861 problems wkcre used to exercise
several neA ly-developed programming libraries and languages. In three weeks.
each benchmark problem was implemented, usually in several versions, by
programmers varing in skill from Butterfly experts to complete Butterfl.
beginners. Our goal was primarily to test different algorithms and also sometimes
to try different programming en'ironments on the Butterfly. The Benchmark
aork resulted in four Butterfly Project Reports (BPRs 10, 12, 13, and 14), available
from Rochester's CS Department.

Four programming environments (two de eloped at Rochester) were used: C
and Chrsalis (the Butterfly operating systcm), the Uniform System (a shared
memory model by BBN, wxith local improvements), LYNX (a systems language
w&ith communication links as primitive objects de'eloped by Michael Scott), and
Structured Message Passing (a message-passing and process family model
developed by Tom LeBlanc).

We conclude that the Butterfly architecture is a flexible general-purpose one
(not a peripheral vision processor). It can be effectively programmed b non-
experts, using tools developed at BBN and Rochester. Our Aork underlined
several general points. There are conceptual and practical tradeoffs in
acknowledging or disguising the existence of local memory. Serialilations hidden
in the operating system can affect performance significantk, Some enhancements
to the microcode would be very helpful. A faster processor would help for certain
applications, and might help re~eal the next system bottleneck. More detailed
conclusions are available in BPR-13.

Four Butterfly Project Reports were generated in the Benchmark exercise.
The results were also briefly reported by Azriel Rosenfeld at the DARPA IU
Workshop at USC in February 1987. The final timings were as follows.

Convolution: 3.48
Zero-Crossings: .16
ChainCodes: 1.47
Hough Transform (10000 points): 1.2
Convex Hull: .17
Visibility: 2.5
Subgraph Isomorphism: 2 solns/sec.
Min Cost Path (all pairs): Linear Speedup to 20 processors.

_ .iMOWI
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18. Effective Implementation of Parallel Algorithms.

The central moti',e for deciding to use a parallel machine for the solution of
some problem is to achieve a much faster solution than is possible on sequential
machines. If we do not achieve a large speedup the expense of the parallel
machine and the softkare that runs on it will have been wasted. It is therefore
imperative that we achieve all the speedup %e can.

The problem of going from a, specificaition of a pr,,hlem to a rtin g progran

that solves the problem inolhes several lc ell of tianlition and transformation

Giv en the specification ke design an abstract algorihni that is judged to he
efficient with respect to some abstract model of computation.

The abstract algorithm i prL grImnrId in an apprSIpi tc lardgue uppWrtd
b5 a programm ing s'i stcnr.

The programming s stern translates this into sonncthing that ra n1 on thC
underlying physical hardkare_

Our success in achieving good performance depends upon all three of these
transformations. Each level of abstraction must by itself embody the reqiiite
degree of parallelism and each transfbrmation must be efficiently mapped onto the
ne',t. A failure an\khere in this chain can destro\ the efficac\ of the entire
process.

We arc therefore stud\ ing this process, attempting to e~aluate our success in
each of these translation processes. Questions of interest include the
appropriateness of the abstract models in which the algorithms are designed, the
kind of abstract model that the programming system presents to the programnmer.
and the success with which the programming s~stem makes efctGCive use of the
underl.ing hard are.

In order to examine this process in more d,'tail vke are taking a tvmo-proned
approach.

On one hand, we are examining theoretically interesting parallel algorithms
and are beginning to produce multiple implementations of them in the 'arious
programming environments available on the Butterfly. This began as part of the
"DARPA Parallel Architectures Benchmark Study" [BPR 131. The emphasis is
upon problems that appear often as subroutines in larger computations. Included
are set operations, manipulations of graphs,sorting, and parallel prefix
computations [M. Fischer and R. Ladner, "Parallel Prefix Computation", JACM
27,4 p831. and C. Kruskal, L. Rudolph, and M. Snir, "The Power of Parallel
Prefix", IEEE Trans. on Computers C-34,10, Oct.85, p965 .]

A difficulty that arose in the Benchmark stud. was explaining why some
implementations of highly parallel algorithms initially exhibited disapointingly
poor speedup. In almost all cases such poor performance is a manifestation of
Amdahl's law: there is some part of the implementation that is sequential and this
serves as a bottleneck limiting overall performance. Possible sources include
sequential sub-computations in the abstract algorithm, serialization introduced by
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the programmmer of the algorithm, serialiation introduced by the programming
system, or sequential operations provided b the underling operating system and
hard" are architecture.

It is often difficult to discern which of these is to blame and the programmer
is left to his o~kn intuition as to the source ()f the problem and ho'A to correct it.
The second thrust of our efforts is to construct performance monitoring and
analysis tools that can be used s.stcmaticail\ to examine these issues.

19. Performance Ana sis lools

The ultimate criterion for evaluating a practical parallel algorithm is ho% 'Aell
an implementation of it runs on a ph~sical machine. Analyses of the higher le',els
of abstraction are useless if the implementations of those levels introduce hidden
costs, either because the abstract model does not adequately represent the true
costs of the operations it proides, or because the sstem introduces hidden
sequentialization.

To obtain both quantitati'e and qualitati\ e estimations of this xe are in the
process of implementing parallel performance monitoring tools. The goal is to
provide a programmer wkith access to detailed information about the performance
of his or her program.

The simplest form of performance monitoring that we have is a modified
,ersion of the Uniform Sstem that gies the programmer feedback as to the
status of each of the processors used by the program. As each processor is queried
approximatelyu four times a second, this method is useful for obtaining onl, ver,
coarse information on processor utilization.

The second form of performance monitoring uses the program counter
profiling facilit, promided by Chr.salis. This can be used to estimate the
utilization of each processor and ,hich code it spends most of its time executing.
Utilities to facilitate its use are currentl, under construction. Unfo-rtunatel., it is
difficult to tell from the information collected b, the profiler ,h\ a particular
processor is being poorly utilized.

The most promising approach to performance monitoring and analysis that
we are pursuing is the extension of the Instant Replay debugging system to
provide enough information to do an off-line performance analysis. As described
above, Instant Replay facilitates the debugging of parallel programs by the use of
"history tapes" that record synchronization events among processes. The histories
are a means of deterministically repeating a particulai execution with respect to
those events.

For performance monitoring and analysis purposes the events recorded in a
history are being extended to include the time at which a process arrives at a
synchronization point and, if it is forced to wait, the time at which it is able to
resume execution. Once recorded, the history will be uploaded to a workstation
for analysis. In addition to gross statistics on processor utilization, the interactive



19

analsis tools will be able to detailed data on the interactions among individual
processors, thus revealing botttlenecks and other dependencies at which a
nominall. parallel computation is serialized.

The core of the initial test suite of programs to be analyzed consists of the
programs written for the DARPA Parallel Architecture Benchmark Studs. In
addition ,e are using a ,ersion Batchcr's odd-eren parallel sort [Knuth Art of
Computer Programming Vol. 3. p.225] using a "merge-split" step at each internal
step of the process rather than just a cornpare and sAap. We ha e this running
tinder Chr.salis and will also cnde tip versions to run tinder our other
programming sstems. We will use the Chrysialis implementation to in,,estigate
the sensitikit\ of the program to process to processor allocation due to swaitch and
memor\ contention. In addition it "ill sere as a basis for evaluating the other
s\ stems.
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